Crystal Field Splitting is Limiting the Stability and Strength of Ultra-incompressible Orthorhombic Transition Metal Tetraborides.
نویسندگان
چکیده
The lattice stability and mechanical strengths of the supposedly superhard transition metal tetraborides (TmB4, Tm = Cr, Mn and Fe) evoked recently much attention from the scientific community due to the potential applications of these materials, as well as because of general scientific interests. In the present study, we show that the surprising stabilization of these compounds from a high symmetry to a low symmetry structure is accomplished by an in-plane rotation of the boron network, which maximizes the in-plane hybridization by crystal field splitting between d orbitals of Tm and p orbitals of B. Studies of mechanical and electronic properties of TmB4 suggest that these tetraborides cannot be intrinsically superhard. The mechanical instability is facilitated by a unique in-plane or out-of-plane weakening of the three-dimensional covalent bond network of boron along different shear deformation paths. These results shed a novel view on the origin of the stability and strength of orthorhombic TmB4, highlighting the importance of combinational analysis of a variety of parameters related to plastic deformation of the crystalline materials when attempting to design new ultra-incompressible, and potentially strong and hard solids.
منابع مشابه
خواص ساختاری، الکتریکی و مغناطیسی منگنایتLa1-xCaxMnO3
Manganites are considered as subbranches of condensed matter physics with a great wealth of physical mechanisms. In this investigation we have studied the structural, electrical and magnetic properties of a series of La1-xCaxMnO3 manganite with x=0.1, 0.2, …,0.5. We observed that the crystal structure of this manganite, with small dopping, at room temperature is orthorhombic and by increasi...
متن کاملSolution state studies on thermodynamic parameters and complexation behavior of inner transition metal ions with creatinine in aqueous and mixed equilibria
The determination of formation constants of binary inner transition metal complexes where M=Y(III) or La(III) or Ce(III) or Pr(III) or Nd(III) or Sm (III) or Gd (III) or Dy (III) or Th(IV) andL = Creatinine have been carried out using Irving–Rossotti titration technique in aqueous mediaat different temperatures and at ionic strength. To understand more about the nature ofequilibrium involving i...
متن کاملA Density Functional Theory Investigation of d8 Transition Metal(II) (Ni, Pd, Pt) Chloride Complexes of Some Vic-dioximes Derivatives
Herein, a theoretical study on the stability of some vic-dioxime complexes of Ni(II), Pd(II) and Pt(II) in gas and aqueous phases is reported. The DFT/M06/SDD and DFT/M06/6-31G+(d,p) levels of theory were adopted for the metal ions and for every other element respectively. Structural analyses of investigated complexes have revealed square planar geometries stabilized by two O–H⋯Cl hydrogen bond...
متن کاملSpontaneous Emission Spectrum from a Driven Three-Level Atom in a Double-Band Photonic Crystal
Abstract The spontaneous emission spectrum from a driven three-level atom placed inside a double-band photonic crystal has been investigated. We use the model which assumes the upper levels of the atomic transition are coupled via a classical driving field. The transition from one of the upper levels to lower level couples to the modes of the modified reservoir, and the transition from the oth...
متن کاملRelative importance of crystal field versus bandwidth to the high pressure spin transition in transition metal monoxides
The crystal field splitting and d bandwidth of the 3d transition metal monoxides MnO, FeO, CoO and NiO are analyzed as a function of pressure within density functional theory. In all four cases the 3d bandwidth is significantly larger than the crystal field splitting over a wide range of compressions. The bandwidth actually increases more as pressure is increased than the crystal field splittin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Scientific reports
دوره 6 شماره
صفحات -
تاریخ انتشار 2016